All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An empirical comparison of popular algorithms for learning gene networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00450559" target="_blank" >RIV/67985556:_____/15:00450559 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    An empirical comparison of popular algorithms for learning gene networks

  • Original language description

    In this work, we study the performance of different algorithms for learning gene networks from data. We consider representatives of different structure learning approaches, some of which perform unrestricted searches, such as the PC algorithm and the Gobnilp method and some of which introduce prior information on the structure, such as the K2 algorithm. Competing methods are evaluated both in terms of their predictive accuracy and their ability to reconstruct the true underlying network. A real data application based on an experiment performed by the University of Padova is also considered. We also discuss merits and disadvantages of categorizing gene expression measurements.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 10th Workshop on Uncertainty Processing WUPES?15

  • ISBN

    978-80-245-2102-2

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    61-72

  • Publisher name

    Oeconomica

  • Place of publication

    Praha

  • Event location

    Monínec

  • Event date

    Sep 16, 2015

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article