Generalizations of OWA Operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00453103" target="_blank" >RIV/67985556:_____/15:00453103 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TFUZZ.2015.2406888" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2015.2406888</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2015.2406888" target="_blank" >10.1109/TFUZZ.2015.2406888</a>
Alternative languages
Result language
angličtina
Original language name
Generalizations of OWA Operators
Original language description
OWA operators can be seen as symmetrized weighted arithmetic means, as Choquet integrals with respect to symmetric measures, or as comonotone additive functionals. Following these three different looks on OWAs, we discuss several already known generalizations ofOWA operators, includingGOWA, IOWA,OMA operators, as well as we propose new types of such generalizations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
2154-2152
UT code for WoS article
000365989300020
EID of the result in the Scopus database
—