All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recursive estimation of high-order Markov chains: Approximation by finite mixtures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00447119" target="_blank" >RIV/67985556:_____/16:00447119 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ins.2015.07.038" target="_blank" >http://dx.doi.org/10.1016/j.ins.2015.07.038</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2015.07.038" target="_blank" >10.1016/j.ins.2015.07.038</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recursive estimation of high-order Markov chains: Approximation by finite mixtures

  • Original language description

    A high-order Markov chain is a universal model of stochastic relations between discrete-valued variables. The exact estimation of its transition probabilities suffers from the curse of dimensionality. It requires an excessive amount of informative observations as well as an extreme memory for storing the corresponding sufficient statistic. The paper bypasses this problem by considering a rich subset of Markov-chain models, namely, mixtures of low dimensional Markov chains, possibly with external variables. It uses Bayesian approximate estimation suitable for a subsequent decision making under uncertainty. The proposed recursive (sequential, one-pass) estimator updates a product of Dirichlet probability densities (pds) used as an approximate posterior pd, projects the result back to this class of pds and applies an improved data-dependent stabilised forgetting, which counteracts the dangerous accumulation of approximation errors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-13502S" target="_blank" >GA13-13502S: Fully Probabilistic Design of Dynamic Decision Strategies for Imperfect Participants in Market Scenarios</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Volume of the periodical

    326

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    188-201

  • UT code for WoS article

    000363348400013

  • EID of the result in the Scopus database

    2-s2.0-84943770986