Recognition of Images Degraded by Gaussian Blur
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00454335" target="_blank" >RIV/67985556:_____/16:00454335 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TIP.2015.2512108" target="_blank" >http://dx.doi.org/10.1109/TIP.2015.2512108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIP.2015.2512108" target="_blank" >10.1109/TIP.2015.2512108</a>
Alternative languages
Result language
angličtina
Original language name
Recognition of Images Degraded by Gaussian Blur
Original language description
In this paper, we propose a new theory of invariants to Gaussian blur. We introduce a notion of a primordial image as a canonical form of all Gaussian blur-equivalent images. The primordial image is defined in spectral domain by means of projection operators. We prove that the moments of the primordial image are invariant to Gaussian blur and we derive recursive formulas for their direct computation without actually constructing the primordial image itself. We show how to extend their invariance also to image rotation. The application of these invariants is in blur-invariant image comparison and recognition. In the experimental part, we perform an exhaustive comparison with two main competitors: 1) the Zhang distance and 2) the local phase quantization.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-16928S" target="_blank" >GA15-16928S: Invariants and adaptive representations of digital images</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Image Processing
ISSN
1057-7149
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
790-806
UT code for WoS article
000364705500008
EID of the result in the Scopus database
2-s2.0-84945913608