All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recognition of Images Degraded by Gaussian Blur

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00454335" target="_blank" >RIV/67985556:_____/16:00454335 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TIP.2015.2512108" target="_blank" >http://dx.doi.org/10.1109/TIP.2015.2512108</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIP.2015.2512108" target="_blank" >10.1109/TIP.2015.2512108</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recognition of Images Degraded by Gaussian Blur

  • Original language description

    In this paper, we propose a new theory of invariants to Gaussian blur. We introduce a notion of a primordial image as a canonical form of all Gaussian blur-equivalent images. The primordial image is defined in spectral domain by means of projection operators. We prove that the moments of the primordial image are invariant to Gaussian blur and we derive recursive formulas for their direct computation without actually constructing the primordial image itself. We show how to extend their invariance also to image rotation. The application of these invariants is in blur-invariant image comparison and recognition. In the experimental part, we perform an exhaustive comparison with two main competitors: 1) the Zhang distance and 2) the local phase quantization.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-16928S" target="_blank" >GA15-16928S: Invariants and adaptive representations of digital images</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Image Processing

  • ISSN

    1057-7149

  • e-ISSN

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    790-806

  • UT code for WoS article

    000364705500008

  • EID of the result in the Scopus database

    2-s2.0-84945913608