All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast convolutional sparse coding using matrix inversion lemma

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00459332" target="_blank" >RIV/67985556:_____/16:00459332 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.dsp.2016.04.012" target="_blank" >http://dx.doi.org/10.1016/j.dsp.2016.04.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dsp.2016.04.012" target="_blank" >10.1016/j.dsp.2016.04.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast convolutional sparse coding using matrix inversion lemma

  • Original language description

    Convolutional sparse coding is an interesting alternative to standard sparse coding in modeling shift-invariant signals, giving impressive results for example in unsupervised learning of visual features. In state-of-the-art methods, the most time-consuming parts include inversion of a linear operator related to convolution. In this article we show how these inversions can be computed non-iteratively in the Fourier domain using the matrix inversion lemma. This greatly speeds up computation and makes convolutional sparse coding computationally feasible even for large problems. The algorithm is derived in three variants, one of them especially suitable for parallel implementation. We demonstrate algorithms on two-dimensional image data but all results hold for signals of arbitrary dimension.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Digital Signal Processing

  • ISSN

    1051-2004

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    44-51

  • UT code for WoS article

    000378662600005

  • EID of the result in the Scopus database

    2-s2.0-84966457206