All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00460710" target="_blank" >RIV/67985556:_____/16:00460710 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/LSP.2016.2577383" target="_blank" >http://dx.doi.org/10.1109/LSP.2016.2577383</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LSP.2016.2577383" target="_blank" >10.1109/LSP.2016.2577383</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

  • Original language description

    Canonical polyadic decomposition (CPD), also known as parallel factor analysis, is a representation of a given tensor as a sum of rank-one components. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. Convergence of ALS is known to be slow, especially when some factor matrices of the tensor contain nearly collinear columns. We propose a novel variant of this technique, in which the factor matrices are partitioned into blocks, and each iteration jointly updates blocks of different factor matrices. Each partial optimization is quadratic and can be done in closed form. The algorithm alternates between different random partitionings of the matrices. As a result, a faster convergence is achieved. Another improvement can be obtained when the method is combined with the enhanced line search of Rajih et al. Complexity per iteration is between those of the ALS and the Levenberg–Marquardt (damped Gauss–Newton) method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-13713S" target="_blank" >GA14-13713S: Tensor Decomposition Methods and Their Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Signal Processing Letters

  • ISSN

    1070-9908

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    993-997

  • UT code for WoS article

    000379694800005

  • EID of the result in the Scopus database

    2-s2.0-84978100769