Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00460710" target="_blank" >RIV/67985556:_____/16:00460710 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/LSP.2016.2577383" target="_blank" >http://dx.doi.org/10.1109/LSP.2016.2577383</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LSP.2016.2577383" target="_blank" >10.1109/LSP.2016.2577383</a>
Alternative languages
Result language
angličtina
Original language name
Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition
Original language description
Canonical polyadic decomposition (CPD), also known as parallel factor analysis, is a representation of a given tensor as a sum of rank-one components. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. Convergence of ALS is known to be slow, especially when some factor matrices of the tensor contain nearly collinear columns. We propose a novel variant of this technique, in which the factor matrices are partitioned into blocks, and each iteration jointly updates blocks of different factor matrices. Each partial optimization is quadratic and can be done in closed form. The algorithm alternates between different random partitionings of the matrices. As a result, a faster convergence is achieved. Another improvement can be obtained when the method is combined with the enhanced line search of Rajih et al. Complexity per iteration is between those of the ALS and the Levenberg–Marquardt (damped Gauss–Newton) method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-13713S" target="_blank" >GA14-13713S: Tensor Decomposition Methods and Their Applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Signal Processing Letters
ISSN
1070-9908
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
993-997
UT code for WoS article
000379694800005
EID of the result in the Scopus database
2-s2.0-84978100769