Evaluating Transfer Entropy for Normal and y-Order Normal Distributions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00461261" target="_blank" >RIV/67985556:_____/16:00461261 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.9734/BJMCS/2016/27377" target="_blank" >http://dx.doi.org/10.9734/BJMCS/2016/27377</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.9734/BJMCS/2016/27377" target="_blank" >10.9734/BJMCS/2016/27377</a>
Alternative languages
Result language
angličtina
Original language name
Evaluating Transfer Entropy for Normal and y-Order Normal Distributions
Original language description
Since its introduction, transfer entropy has become a popular information-theoretic tool for detecting causal inference between two discretized random processes. By means of statistical tools we evaluate the transfer entropy of stationary processes whose continuous probability distributions are known. We study transfer entropy of processes coming from the family of γ-order generalized normal distribution. Applying Kullback-Leibler divergence we provide explicit expressions of the transfer entropy for processes which are normal, as well as for processes from the class of γ-order normal distributions. The results achieved in the paper for continuous time can be applied also to the discrete time case, concretely to the time series whose underlying process distribution is from the discussed classes.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
British Journal of Mathematics & Computer Science
ISSN
2231-0851
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
1-20
UT code for WoS article
—
EID of the result in the Scopus database
—