All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Power-law cross-correlations estimation under heavy tails

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00472030" target="_blank" >RIV/67985556:_____/16:00472030 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11230/16:10324303

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.cnsns.2016.04.010" target="_blank" >http://dx.doi.org/10.1016/j.cnsns.2016.04.010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cnsns.2016.04.010" target="_blank" >10.1016/j.cnsns.2016.04.010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Power-law cross-correlations estimation under heavy tails

  • Original language description

    We examine the performance of six estimators of the power-law cross-correlations -- the detrended cross-correlation analysis, the detrending moving-average cross-correlation analysis, the height cross-correlation analysis, the averaged periodogram estimator, the cross-periodogram estimator and the local cross-Whittle estimator -- under heavy-tailed distributions. The selection of estimators allows to separate these into the time and frequency domain estimators. By varying the characteristic exponent of the $alpha$-stable distributions which controls the tails behavior, we report several interesting findings. First, the frequency domain estimators are practically unaffected by heavy tails bias-wise. Second, the time domain estimators are upward biased for heavy tails but they have lower estimator variance than the other group for short series. Third, specific estimators are more appropriate depending on distributional properties and length of the analyzed series. In addition, we provide a discussion of implications of these results for empirical applications as well as theoretical explanations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    AH - Economics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP14-11402P" target="_blank" >GP14-11402P: Bivariate long memory analysis of financial time series</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Nonlinear Science and Numerical Simulation

  • ISSN

    1007-5704

  • e-ISSN

  • Volume of the periodical

    40

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    163-172

  • UT code for WoS article

    000377294100015

  • EID of the result in the Scopus database

    2-s2.0-84964868782