Power-law cross-correlations estimation under heavy tails
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00472030" target="_blank" >RIV/67985556:_____/16:00472030 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11230/16:10324303
Result on the web
<a href="http://dx.doi.org/10.1016/j.cnsns.2016.04.010" target="_blank" >http://dx.doi.org/10.1016/j.cnsns.2016.04.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cnsns.2016.04.010" target="_blank" >10.1016/j.cnsns.2016.04.010</a>
Alternative languages
Result language
angličtina
Original language name
Power-law cross-correlations estimation under heavy tails
Original language description
We examine the performance of six estimators of the power-law cross-correlations -- the detrended cross-correlation analysis, the detrending moving-average cross-correlation analysis, the height cross-correlation analysis, the averaged periodogram estimator, the cross-periodogram estimator and the local cross-Whittle estimator -- under heavy-tailed distributions. The selection of estimators allows to separate these into the time and frequency domain estimators. By varying the characteristic exponent of the $alpha$-stable distributions which controls the tails behavior, we report several interesting findings. First, the frequency domain estimators are practically unaffected by heavy tails bias-wise. Second, the time domain estimators are upward biased for heavy tails but they have lower estimator variance than the other group for short series. Third, specific estimators are more appropriate depending on distributional properties and length of the analyzed series. In addition, we provide a discussion of implications of these results for empirical applications as well as theoretical explanations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AH - Economics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-11402P" target="_blank" >GP14-11402P: Bivariate long memory analysis of financial time series</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Nonlinear Science and Numerical Simulation
ISSN
1007-5704
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
163-172
UT code for WoS article
000377294100015
EID of the result in the Scopus database
2-s2.0-84964868782