All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00473144" target="_blank" >RIV/67985556:_____/17:00473144 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24220/17:00004530

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-53547-0" target="_blank" >http://dx.doi.org/10.1007/978-3-319-53547-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-53547-0" target="_blank" >10.1007/978-3-319-53547-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources

  • Original language description

    In many applications, there is a need to blindly separate independent sources from their linear instantaneous mixtures while the mixing matrix or source properties are slowly or abruptly changing in time. The easiest way to separate the data is to consider off-line estimation of the model parameters repeatedly in time shifting window. Another popular method is the stochastic natural gradient algorithm, which relies on non-Gaussianity of the separated signals and is adaptive by its nature. In this paper, we propose an adaptive version of two blind source separation algorithms which exploit non-stationarity of the original signals. The results indicate that the proposed algorithms slightly outperform the natural gradient in the trade-off between the algorithm’s ability to quickly adapt to changes in the mixing matrix and the variance of the estimate when the mixing is stationary.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017

  • ISBN

    978-3-319-53546-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    10

  • Pages from-to

    172-181

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Grenoble

  • Event date

    Feb 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418581400017