Directional quantile regression in R
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476587" target="_blank" >RIV/67985556:_____/17:00476587 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14736/kyb-2017-3-0480" target="_blank" >http://dx.doi.org/10.14736/kyb-2017-3-0480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2017-3-0480" target="_blank" >10.14736/kyb-2017-3-0480</a>
Alternative languages
Result language
angličtina
Original language name
Directional quantile regression in R
Original language description
Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation of the authors' moQuantile toolbox for Octave and MATLAB, and provides all the necessary computational support for both the directional multiple-output quantile regression methods to the wide statistical public. The article offers a concise summary of the statistical theory behind modQR, overviews the package in brief, points out its departures from moQuantile, comments on its use and performance, and demonstrates its application.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA14-07234S" target="_blank" >GA14-07234S: Multivariate regression quantiles in econometrics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
480-492
UT code for WoS article
000407667400006
EID of the result in the Scopus database
2-s2.0-85026546598