All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feature Selection on Affine Moment Invariants in Relation to Known Dependencies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476980" target="_blank" >RIV/67985556:_____/17:00476980 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-64698-5_24" target="_blank" >http://dx.doi.org/10.1007/978-3-319-64698-5_24</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-64698-5_24" target="_blank" >10.1007/978-3-319-64698-5_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feature Selection on Affine Moment Invariants in Relation to Known Dependencies

  • Original language description

    Moment invariants are one of the techniques of feature extraction frequently used for pattern recognition algorithms. A moment is a projection of function into polynomial basis and an invariant is a function returning the same value for an input with and without particular class of degradation. Several techniques of moment invariant creation exist often generating over-complete set of invariants. Dependencies in these sets are commonly in a form of complicated polynomials, further-nmore they can contain dependencies of higher orders. These theoretical dependencies are valid in the continuous domain but it is well known that in discrete cases are often invalidated by discretization. Therefore, it would be feasible to begin classi cation with such an over-completenset and adaptively nd the pseudo-independent set of invariants by the means of feature selection techniques. This study focuses on testing of the infuence of theoretical invariant dependencies in discrete pattern recognition applications.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA15-16928S" target="_blank" >GA15-16928S: Invariants and adaptive representations of digital images</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Analysis of Images and Patterns : 17th International Conference, CAIP 2017

  • ISBN

    978-3-319-64698-5

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    285-295

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ystad

  • Event date

    Aug 22, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000432084600024