All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Likelihood tempering in dynamic model averaging

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00477043" target="_blank" >RIV/67985556:_____/17:00477043 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-54084-9_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-54084-9_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-54084-9_7" target="_blank" >10.1007/978-3-319-54084-9_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Likelihood tempering in dynamic model averaging

  • Original language description

    We study the problem of online prediction with a set of candidate models using dynamic model averaging procedures. The standard assumptions of model averaging state that the set of admissible models contains the true one(s), and that these models are continuously updated by valid data. However, both these assumptions are often violated in practice. The models used for online tasks are often more or less misspecified and the data corrupted (which is, mathematically, a demonstration of the same problem). Both these factors negatively influence the Bayesian inference and the resulting predictions. In this paper, we propose to suppress these issues by extending the Bayesian update by a sort of likelihood tempering, moderating the impact of observed data to inference. The method is compared to the generic dynamic model averaging and to an alternative solution via sequential quasi-Bayesian mixture modeling.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GP14-06678P" target="_blank" >GP14-06678P: Distributed dynamic estimation in diffusion networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Bayesian Statistics in Action

  • ISBN

    978-3-319-54083-2

  • ISSN

    2194-1009

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    67-77

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Florence

  • Event date

    Jun 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418403500007