Estimation of long memory in volatility using wavelets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00478480" target="_blank" >RIV/67985556:_____/17:00478480 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11230/17:10363572
Result on the web
<a href="http://dx.doi.org/10.1515/snde-2016-0101" target="_blank" >http://dx.doi.org/10.1515/snde-2016-0101</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/snde-2016-0101" target="_blank" >10.1515/snde-2016-0101</a>
Alternative languages
Result language
angličtina
Original language name
Estimation of long memory in volatility using wavelets
Original language description
This work studies wavelet-based Whittle estimator of the fractionally integrated exponential gen- eralized autoregressive conditional heteroscedasticity (FIEGARCH) model often used for modeling long memory in volatility of financial assets. The newly proposed estimator approximates the spectral density using wavelet transform, which makes it more robust to certain types of irregularities in data. Based on an extensive Monte Carlo study, both behavior of the proposed estimator and its relative performance with respect to traditional estimators are assessed. In addition, we study properties of the estimators in presence of jumps, which brings interesting discussion. We find that wavelet-based estimator may become an attrac- tive robust and fast alternative to the traditional methods of estimation. In particular, a localized version of our estimator becomes attractive in small samples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GA13-32263S" target="_blank" >GA13-32263S: Multivariate spectral analysis of financial markets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studies in Nonlinear Dynamics and Econometrics
ISSN
1081-1826
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000411276100002
EID of the result in the Scopus database
2-s2.0-85021440941