Compositional models for credal sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00483288" target="_blank" >RIV/67985556:_____/17:00483288 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ijar.2017.08.007" target="_blank" >http://dx.doi.org/10.1016/j.ijar.2017.08.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2017.08.007" target="_blank" >10.1016/j.ijar.2017.08.007</a>
Alternative languages
Result language
angličtina
Original language name
Compositional models for credal sets
Original language description
We present the composition operator, already known from probability, possibility, evidence and valuation-based systems theories, for credal sets. We prove that the proposed definition preserves all the properties enabling us to design compositional models in a way analogous to those in the above-mentioned theories. A special kind of compositional models, the so-called perfect sequences of credal sets, is studied in more detail and (among others) its relationship to perfect sequences of probability distributions is revealed. The theoretical results are illustrated by numerous simple examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-12010S" target="_blank" >GA16-12010S: Conditional independence structures: combinatorial and optimization methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
359-373
UT code for WoS article
000413380900021
EID of the result in the Scopus database
2-s2.0-85028453587