Implicational (semilinear) logics III: completeness properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00477040" target="_blank" >RIV/67985556:_____/18:00477040 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/18:00477040
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-017-0577-0" target="_blank" >http://dx.doi.org/10.1007/s00153-017-0577-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-017-0577-0" target="_blank" >10.1007/s00153-017-0577-0</a>
Alternative languages
Result language
angličtina
Original language name
Implicational (semilinear) logics III: completeness properties
Original language description
This paper presents an abstract study of completeness properties of non-classical logics with respect to matricial semantics. Given a class of reduced matrix models we define three completeness properties of increasing strength and characterize them in several useful ways. Some of these characterizations hold in absolute generality and others are for logics with generalized implication or disjunction connectives, as considered in the previous papers. Finally, we consider completeness with respect to matrices with a linear dense order and characterize it in terms of an extension property and a syntactical metarule. This is the final part of the investigation started and developed in the papers (Cintula and Noguera in Arch Math Logic 49(4):417–446, 2010 and Arch Math Logic 53(3):353–372, 2016).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14654S" target="_blank" >GA13-14654S: An Order-Based Approach to Non-Classical Propositional and Predicate Logics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
30
Pages from-to
391-420
UT code for WoS article
000428317500011
EID of the result in the Scopus database
2-s2.0-85026497280