Marginalized approximate filtering of state-space models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00478074" target="_blank" >RIV/67985556:_____/18:00478074 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/acs.2821" target="_blank" >http://dx.doi.org/10.1002/acs.2821</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/acs.2821" target="_blank" >10.1002/acs.2821</a>
Alternative languages
Result language
angličtina
Original language name
Marginalized approximate filtering of state-space models
Original language description
The marginalized particle filtering (MPF) is a powerful technique reducing the number of particles necessary to effectively estimate hidden states of state-space models. This paper alleviates the assumption of a fully known and computationally tractable observation model. Exploiting the recent developments in the theory of approximate Bayesian computation (ABC) filtration, an ABC counterpart of MPF is proposed, applicable when the observation model is too complex to be evaluated analytically or even numerically, but it is still possible to sample from it by plugging in the state. The novelty is 2-fold. First, ABC methods have not been used in marginalized filtering yet. Second, a new multivariate robust method for evaluation of particle weights is proposed. The goal of this paper is to demonstrate the idea on the background of the MPF with a particular accent on exposition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-09848S" target="_blank" >GA16-09848S: Rationality and Deliberation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Adaptive Control and Signal Processing
ISSN
0890-6327
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
1-12
UT code for WoS article
000419919900001
EID of the result in the Scopus database
2-s2.0-85030092933