Semi-supervised Bayesian Source Separation of Scintigraphic Image Sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00480504" target="_blank" >RIV/67985556:_____/18:00480504 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-68195-5_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68195-5_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68195-5_6" target="_blank" >10.1007/978-3-319-68195-5_6</a>
Alternative languages
Result language
angličtina
Original language name
Semi-supervised Bayesian Source Separation of Scintigraphic Image Sequences
Original language description
Many diagnostic methods using scintigraphic image sequence require decomposition of the sequence into tissue images and their time-activity curves. Standard procedure for this task is still manual selection of regions of interest (ROIs) which can be highly subjective due to their overlaps and poor signal-to-noise ratio. This can be overcome by automatic decomposition, however, the results may not have good physiological meaning. In this contribution, we aim to combine these approaches in semi-supervised procedure which is based on Bayesian blind source separation with the possibility of manual interaction after each run until an acceptable solution is obtained. The manual interaction is based on manual ROI placement and using its position to modify the corresponding prior parameters of the model. Performance of the proposed method is studied on real scintigraphic image sequence as well as on estimation of the specific diagnostic parameter on representative dataset of 10 scintigraphic sequences.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2017: VipIMAGE 2017)
ISBN
978-3-319-68195-5
ISSN
2212-9391
e-ISSN
2212-9413
Number of pages
10
Pages from-to
52-61
Publisher name
Springer
Place of publication
Cham
Event location
Porto
Event date
Oct 18, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000437032100006