Robust estimators based on generalization of trimmed mean
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00481224" target="_blank" >RIV/67985556:_____/18:00481224 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/03610918.2017.1337136" target="_blank" >http://dx.doi.org/10.1080/03610918.2017.1337136</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03610918.2017.1337136" target="_blank" >10.1080/03610918.2017.1337136</a>
Alternative languages
Result language
angličtina
Original language name
Robust estimators based on generalization of trimmed mean
Original language description
In this article, we propose new estimators of location. These estimators select a robust set around the geometric median, enlarge it, and compute the (iterative) weighted mean from it. By doing so, we obtain a robust estimator in the sense of the breakdown point, which uses more observations than standard estimators. We apply our approach on the concepts of boxplot and bagplot. We work in a general normed vector space and allow multi-valued estimators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Statistics - Simulation and Computation and Communications in Statistics Part B - Simulation and Computation
ISSN
0361-0918
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
2139-2151
UT code for WoS article
000438753900017
EID of the result in the Scopus database
2-s2.0-85024472119