Rotation of 2D orthogonal polynomials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00483250" target="_blank" >RIV/67985556:_____/18:00483250 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.patrec.2017.12.013" target="_blank" >http://dx.doi.org/10.1016/j.patrec.2017.12.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patrec.2017.12.013" target="_blank" >10.1016/j.patrec.2017.12.013</a>
Alternative languages
Result language
angličtina
Original language name
Rotation of 2D orthogonal polynomials
Original language description
Orientation-independent object recognition mostly relies on rotation invariants. Invariants from moments orthogonal on a square have favorable numerical properties but they are difficult to construct. The paper presents sufficient and necessary conditions, that must be fulfilled by 2D separable orthogonal polynomi- als, for being transformed under rotation in the same way as are the monomials. If these conditions have been met, the rotation property propagates from polynomials to moments and allows a straightforward derivation of rotation invariants. We show that only orthogonal polynomials belonging to a specific class exhibit this property. We call them Hermite-like polynomials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20206 - Computer hardware and architecture
Result continuities
Project
<a href="/en/project/GA15-16928S" target="_blank" >GA15-16928S: Invariants and adaptive representations of digital images</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition Letters
ISSN
0167-8655
e-ISSN
—
Volume of the periodical
102
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
44-49
UT code for WoS article
000424628300007
EID of the result in the Scopus database
2-s2.0-85038001582