Fraisse classes of graded relational structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00490791" target="_blank" >RIV/67985556:_____/18:00490791 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2018.05.010" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2018.05.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2018.05.010" target="_blank" >10.1016/j.tcs.2018.05.010</a>
Alternative languages
Result language
angličtina
Original language name
Fraisse classes of graded relational structures
Original language description
We study classes of graded structures satisfying the properties of amalgamation, joint embedding and hereditariness. Given appropriate conditions, we can build a graded analogue of the Fraïssé limit. Some examples such as the class of all finite weighted graphs or the class of all finite fuzzy orders (evaluated on a particular countable algebra) will be examined.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-04630S" target="_blank" >GA17-04630S: Predicate graded logics and their applications to computer science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
737
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
81-90
UT code for WoS article
000437074500005
EID of the result in the Scopus database
2-s2.0-85047063158