On the passage from nonlinear to linearized viscoelasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493138" target="_blank" >RIV/67985556:_____/18:00493138 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/17M1131428" target="_blank" >http://dx.doi.org/10.1137/17M1131428</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/17M1131428" target="_blank" >10.1137/17M1131428</a>
Alternative languages
Result language
angličtina
Original language name
On the passage from nonlinear to linearized viscoelasticity
Original language description
We formulate a quasistatic nonlinear model for nonsimple viscoelastic materials atna finite-strain setting in the Kelvin-Voigt rheology where the viscosity stress tensor complies with the principle of time-continuous frame indifference. We identify weak solutions in the nonlinear framework as limits of time-incremental problems for vanishing time increment. Moreover, we show that linearization around the identity leads to the standard system for linearized viscoelasticity and that solutions of the nonlinear system converge in a suitable sense to solutions of the linear one. The same property holds for time-discrete approximations, and we provide a corresponding commutativity result. Our main tools are the theory of gradient flows in metric spaces and Γ-convergence.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
4426-4456
UT code for WoS article
000443341200029
EID of the result in the Scopus database
2-s2.0-85055251741