The cone of supermodular games on finite distributive lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00503871" target="_blank" >RIV/67985556:_____/19:00503871 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0166218X19300599" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166218X19300599</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2019.01.024" target="_blank" >10.1016/j.dam.2019.01.024</a>
Alternative languages
Result language
angličtina
Original language name
The cone of supermodular games on finite distributive lattices
Original language description
In this article we study supermodular functions on finite distributive lattices. Relaxing the assumption that the domain is a powerset of a finite set, we focus on geometrical properties of the polyhedral cone of such functions. Specifically, we generalize the criterion for extremality and study the face lattice of the supermodular cone. An explicit description of facets by the corresponding tight linear inequalities is provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-12010S" target="_blank" >GA16-12010S: Conditional independence structures: combinatorial and optimization methods</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
260
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
144-154
UT code for WoS article
000466259100011
EID of the result in the Scopus database
2-s2.0-85061347765