A sufficient condition of equivalence of the Choquet and the pan-integral
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00504582" target="_blank" >RIV/67985556:_____/19:00504582 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011418301246" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011418301246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.03.016" target="_blank" >10.1016/j.fss.2018.03.016</a>
Alternative languages
Result language
angličtina
Original language name
A sufficient condition of equivalence of the Choquet and the pan-integral
Original language description
In this note, we continue to investigate the relationship between the Choquet integral and the pan-integral on infinite space. We will show that the (M)-property of monotone measures is a sufficient condition that the Choquet integral coincides with the pan-integral. In this discussion, the spaces are not restricted to be finite, thus the previous results obtained in finite space are further generalized and developed. A characteristic of the (M)-property of monotone measures is also presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
355
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
100-105
UT code for WoS article
000450287700007
EID of the result in the Scopus database
2-s2.0-85044862583