Orthogonal Affine Invariants from Gaussian-Hermite Moments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00508021" target="_blank" >RIV/67985556:_____/19:00508021 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-29891-3_36" target="_blank" >http://dx.doi.org/10.1007/978-3-030-29891-3_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-29891-3_36" target="_blank" >10.1007/978-3-030-29891-3_36</a>
Alternative languages
Result language
angličtina
Original language name
Orthogonal Affine Invariants from Gaussian-Hermite Moments
Original language description
We propose a new kind of moment invariants with respect to an affine transformation. The new invariants are constructed in two steps. First, the affine transformation is decomposed into scaling, stretching and two rotations. The image is partially normalized up to the second rotation, and then rotation invariants from Gaussian-Hermite moments are applied. Comparing to the existing approaches – traditional direct affine invariants and complete image normalization – the proposed method is more numerically stable. The stability is achieved thanks to the use of orthogonal Gaussian-Hermite moments and also due to the partial normalization, which is more robust to small changes of the object than the complete normalization. Both effects are documented in the paper by experiments. Better stability opens the possibility of calculating affine invariants of higher orders with better discrimination power. This might be useful namely when different classes contain similar objects and cannot be separated by low-order invariants.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20206 - Computer hardware and architecture
Result continuities
Project
<a href="/en/project/GA18-07247S" target="_blank" >GA18-07247S: Methods and Algorithms for Vector and Tensor Field Image Analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Analysis of Images and Patterns : CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings
ISBN
978-3-030-29929-3
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
413-424
Publisher name
Springer
Place of publication
Cham
Event location
Salerno
Event date
Sep 2, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—