All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Orthogonal Affine Invariants from Gaussian-Hermite Moments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00508021" target="_blank" >RIV/67985556:_____/19:00508021 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-29891-3_36" target="_blank" >http://dx.doi.org/10.1007/978-3-030-29891-3_36</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-29891-3_36" target="_blank" >10.1007/978-3-030-29891-3_36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Orthogonal Affine Invariants from Gaussian-Hermite Moments

  • Original language description

    We propose a new kind of moment invariants with respect to an affine transformation. The new invariants are constructed in two steps. First, the affine transformation is decomposed into scaling, stretching and two rotations. The image is partially normalized up to the second rotation, and then rotation invariants from Gaussian-Hermite moments are applied. Comparing to the existing approaches – traditional direct affine invariants and complete image normalization – the proposed method is more numerically stable. The stability is achieved thanks to the use of orthogonal Gaussian-Hermite moments and also due to the partial normalization, which is more robust to small changes of the object than the complete normalization. Both effects are documented in the paper by experiments. Better stability opens the possibility of calculating affine invariants of higher orders with better discrimination power. This might be useful namely when different classes contain similar objects and cannot be separated by low-order invariants.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20206 - Computer hardware and architecture

Result continuities

  • Project

    <a href="/en/project/GA18-07247S" target="_blank" >GA18-07247S: Methods and Algorithms for Vector and Tensor Field Image Analysis</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Analysis of Images and Patterns : CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings

  • ISBN

    978-3-030-29929-3

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    413-424

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Salerno

  • Event date

    Sep 2, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article