All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sensitivity in tensor decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00509948" target="_blank" >RIV/67985556:_____/19:00509948 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8846103" target="_blank" >https://ieeexplore.ieee.org/document/8846103</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LSP.2019.2943060" target="_blank" >10.1109/LSP.2019.2943060</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sensitivity in tensor decomposition

  • Original language description

    Canonical polyadic (CP) tensor decomposition is an important task in many applications. Many times, the true tensor rank is not known, or noise is present, and in such situations, different existing CP decomposition algorithms provide very different results. In this paper, we introduce a notion of sensitivity of CP decomposition and suggest to use it as a side criterion (besides the fitting error)nto evaluate different CP decomposition results. Next, we propose a novel variant of a Krylov-Levenberg-Marquardt CP decomposition algorithm which may serve for CP decomposition with a constraint on the sensitivity. In simulations, we decompose order-4 tensors that come from convolutional neural networks. We show that it is useful to combine the CP decomposition algorithms with an error-preserving correction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Signal Processing Letters

  • ISSN

    1070-9908

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    1653-1657

  • UT code for WoS article

    000492301000002

  • EID of the result in the Scopus database

    2-s2.0-85077750421