Orthogonal Approximation of Marginal Likelihood of Generative Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00522204" target="_blank" >RIV/67985556:_____/19:00522204 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/19:00339857
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Orthogonal Approximation of Marginal Likelihood of Generative Models
Original language description
This paper presents a new approximation of the marginal likelihood of generative models which is used as a score for anomaly detection. The score is motivated by the shortcoming of the popular reconstruction error that it can behave arbitrarily outside the known samples. The proposed score corrects this by orthogonal combination of the reconstruction error and the likelihood in the latent space. As experimentally shown on benchmark problems from anomaly detection and illustrated on a toy problem, this combination lends the score robustness to outliers. Generative models evaluated with this score outperformed the competing methods especially in tasks of learning distribution from data corrupted by anomalies. Finally, the score is compatible with contemporary generative models, namely variational auto-encoders and generative adversarial networks
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů