3D Multi-frequency Fully Correlated Causal Random Field Texture Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00522438" target="_blank" >RIV/67985556:_____/20:00522438 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/20:00054924
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-41299-9_33" target="_blank" >http://dx.doi.org/10.1007/978-3-030-41299-9_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-41299-9_33" target="_blank" >10.1007/978-3-030-41299-9_33</a>
Alternative languages
Result language
angličtina
Original language name
3D Multi-frequency Fully Correlated Causal Random Field Texture Model
Original language description
We propose a fast novel multispectral texture model with an analytical solution for both parameter estimation as well as unlimited synthesis. This Gaussian random field type of model combines a principal random field containing measured multispectral pixels with an auxiliary random field resulting from a given function whose argument is the principal field data.nThe model can serve as a stand-alone texture model or a local model for more complex compound random field or bidirectional texture function models.nThe model can be beneficial not only for texture synthesis, enlargement, editing, or compression but also for high accuracy texture recognition.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-12340S" target="_blank" >GA19-12340S: Surface material recognition under variable optical observation conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Pattern Recognition
ISBN
978-3-030-41298-2
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
423-434
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Auckland
Event date
Nov 26, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—