All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weighted Krylov-Levenberg-Marquardt method for canonical polyadic tensor decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00523836" target="_blank" >RIV/67985556:_____/20:00523836 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICASSP40776.2020.9054312" target="_blank" >http://dx.doi.org/10.1109/ICASSP40776.2020.9054312</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP40776.2020.9054312" target="_blank" >10.1109/ICASSP40776.2020.9054312</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weighted Krylov-Levenberg-Marquardt method for canonical polyadic tensor decomposition

  • Original language description

    Weighted canonical polyadic (CP) tensor decomposition appears in a wide range of applications. A typical situation where the weighted decomposition is needed is when some tensor elements are unknown, and the task is to fill in the missing elements under the assumption that the tensor admits a low-rank model. The traditional methods for large-scale decomposition tasks are based on alternating least-squares methods or gradient methods. Second-order methods might have significantly better convergence, but so far they were used only on small tensors. The proposed Krylov-Levenberg-Marquardt method enables to do second-order-based iterations even in large-scale decomposition problems, with or without weights. We show in simulations that the proposed technique can outperform existing state-of-the-art algorithms in some scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2020

  • ISBN

    978-1-5090-6631-5

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    3917-3921

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Barcelona

  • Event date

    May 4, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article