On Solutions of Marginal Problem in Evidence Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00525114" target="_blank" >RIV/67985556:_____/20:00525114 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-50143-3_29" target="_blank" >http://dx.doi.org/10.1007/978-3-030-50143-3_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-50143-3_29" target="_blank" >10.1007/978-3-030-50143-3_29</a>
Alternative languages
Result language
angličtina
Original language name
On Solutions of Marginal Problem in Evidence Theory
Original language description
Recently introduced marginal problem – which addresses the question of whether or not a common extension exists for a given set of marginal basic assignments – in the framework of evidence theory is recalled. Sets of solutions are studied in more detail and it is shown, by a simple example, that their structure is much more complicated (i.e. the number of extreme vertices of the convex set of solutions is substantially greater) than that in an analogous problem in probabilistic framework. The concept of product extension of two basic assignments is generalized (via operator of composition) to a finite sequence of basic assignments. This makes possible not only to express the extension, if it exists, in a closed form, but also enables us to find the sufficient condition for the existence of an extension of evidential marginal problem. Presented approach is illustrated by a simple example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-04579S" target="_blank" >GA19-04579S: Conditonal independence structures: methods of polyhedral geometry</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Information Processing and Management of Uncertainty in Knowledge-Based Systems : 18th International Conference, IPMU 2020
ISBN
978-3-030-50142-6
ISSN
1865-0929
e-ISSN
—
Number of pages
12
Pages from-to
382-393
Publisher name
Springer
Place of publication
Cham
Event location
Lisabon
Event date
Jun 15, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—