All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00532181" target="_blank" >RIV/67985556:_____/20:00532181 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9195780" target="_blank" >https://ieeexplore.ieee.org/document/9195780</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2020.3023823" target="_blank" >10.1109/TSP.2020.3023823</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices

  • Original language description

    We study the problem of distributed sequential estimation of common states and measurement noise covariance matrices of hidden Markov models by networks of collaborating nodes. We adopt a realistic assumption that the true covariance matrices are possibly different (heterogeneous) across the network. This setting is frequent in many distributed real-world systems where the sensors (e.g., radars) are deployed in a spatially anisotropic environment, or where the networks may consist of sensors with different measuring principles (e.g., using different wavelengths). Our solution is rooted in the variational Bayesian paradigm. In order to improve the estimation performance, the measurements and the posterior estimates are communicated among adjacent neighbors within one network hop distance using the information diffusion strategy. The resulting adaptive algorithm selects neighbors with compatible information to prevent degradation of estimates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/GA20-27939S" target="_blank" >GA20-27939S: Bayesian methods for non-linear blind inverse problems</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Signal Processing

  • ISSN

    1053-587X

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    5365-5378

  • UT code for WoS article

    000574739900010

  • EID of the result in the Scopus database

    2-s2.0-85092572093