On Tail Dependence and Multifractality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00533622" target="_blank" >RIV/67985556:_____/20:00533622 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/10/1767" target="_blank" >https://www.mdpi.com/2227-7390/8/10/1767</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8101767" target="_blank" >10.3390/math8101767</a>
Alternative languages
Result language
angličtina
Original language name
On Tail Dependence and Multifractality
Original language description
We study whether, and if yes then how, a varying auto-correlation structure in different parts of distributions is reflected in the multifractal properties of a dynamic process. Utilizing the quantile autoregressive process with Gaussian copula using three popular estimators of the generalized Hurst exponent, our Monte Carlo simulation study shows that such dynamics translate into multifractal dynamics of the generated series. The tail-dependence of the auto-correlations forms strong enough non-linear dependencies to be reflected in the estimated multifractal spectra and separated from the case of the standard auto-regressive process. With a quick empirical example from financial markets, we argue that the interaction is more important for the asymmetric tail dependence. In addition, we discuss and explain the often reported paradox of higher multifractality of shuffled series compared to the original financial series. In short, the quantile-dependent auto-correlation structures qualify as sources of multifractality and they are worth further theoretical examination.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GJ17-12386Y" target="_blank" >GJ17-12386Y: Multifractal analysis in finance: Extreme events, portfolio and risk management, and market complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
10
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
1767
UT code for WoS article
000585454200001
EID of the result in the Scopus database
2-s2.0-85092929530