All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Similarity-based transfer learning of decision policies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00534000" target="_blank" >RIV/67985556:_____/20:00534000 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SMC42975.2020.9283093" target="_blank" >http://dx.doi.org/10.1109/SMC42975.2020.9283093</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMC42975.2020.9283093" target="_blank" >10.1109/SMC42975.2020.9283093</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Similarity-based transfer learning of decision policies

  • Original language description

    We consider a problem of learning decision policy from past experience available. Using the Fully Probabilistic Design (FPD) formalism, we propose a new general approach for finding a stochastic policy from the past data. The proposedapproach assigns degree of similarity to all of the past closed-loop behaviors. The degree of similarity expresses how close the current decision making task is to a past task. Then it is used by Bayesian estimation to learn an approximate optimal policy, which comprises the best past experience. The approach learns decision policy directly from the data without interacting with any supervisor/expert or using any reinforcement signal. The past experience may consider a decision objective different than the current one. Moreover the past decision policy need not to be optimal with respect to the past objective. We demonstrate our approach on simulated examples and show that the learned policy achieves better performance than optimal FPD policy whenever a mismodeling is present.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/LTC18075" target="_blank" >LTC18075: Distributed rational decision making: cooperation aspects</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2020

  • ISBN

    978-1-7281-8527-9

  • ISSN

    1062-922X

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    37-44

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Toronto

  • Event date

    Oct 11, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article