All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

First-order geometric multilevel optimization for discrete tomography

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00542259" target="_blank" >RIV/67985556:_____/21:00542259 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-75549-2_16" target="_blank" >http://dx.doi.org/10.1007/978-3-030-75549-2_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-75549-2_16" target="_blank" >10.1007/978-3-030-75549-2_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    First-order geometric multilevel optimization for discrete tomography

  • Original language description

    Discrete tomography (DT) naturally leads to a hierarchy of models of varying discretization levels. We employ multilevel optimization (MLO) to take advantage of this hierarchy: while working at the fine level we compute the search direction based on a coarse model. Importing concepts from information geometry to the n-orthotope, we propose a smoothing operator that only uses first-order information and incorporates constraints smoothly. We show that the proposed algorithm is well suited to the ill-posed reconstruction problem in DT, compare it to a recent MLO method that nonsmoothly incorporates box constraints and demonstrate its efficiency on several large-scale examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Scale Space and Variational Methods in Computer Vision: 8th International Conference, SSVM 2021

  • ISBN

    978-3-030-75549-2

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    191-203

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Virtual Event

  • Event date

    May 16, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article