All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bayesian Mixture Estimation without Tears

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00544577" target="_blank" >RIV/67985556:_____/21:00544577 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21260/21:00350675

  • Result on the web

    <a href="http://dx.doi.org/10.5220/0010508706410648" target="_blank" >http://dx.doi.org/10.5220/0010508706410648</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0010508706410648" target="_blank" >10.5220/0010508706410648</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bayesian Mixture Estimation without Tears

  • Original language description

    This paper aims at presenting the on-line non-iterative form of Bayesian mixture estimation. The model used is composed of a set of sub-models (components) and an estimated pointer variable that currently indicates the active component. The estimation is built on an approximated Bayes rule using weighted measured data. The weights are derived from the so called proximity of measured data entries to individual components. The basis for the generation of the weights are integrated likelihood functions with the inserted point estimates of the component parameters. One of the main advantages of the presented data analysis method is a possibility of a simple incorporation of the available prior knowledge. Simple examples with a programming code as well as results of experiments with real data are demonstrated. The main goal of this paper is to provide clear description of the Bayesian estimation method based on the approximated likelihood functions, called proximities.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/8A19009" target="_blank" >8A19009: Arrowhead Tools for Engineering of Digitalisation Solutions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics

  • ISBN

    978-989-758-522-7

  • ISSN

    2184-2809

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    641-648

  • Publisher name

    Scitepress

  • Place of publication

    Setúbal

  • Event location

    Setúbal (online)

  • Event date

    Jul 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article