Generalized convergence theorems for monotone measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00545166" target="_blank" >RIV/67985556:_____/21:00545166 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011415002894?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011415002894?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2020.07.020" target="_blank" >10.1016/j.fss.2020.07.020</a>
Alternative languages
Result language
angličtina
Original language name
Generalized convergence theorems for monotone measures
Original language description
In this paper, we propose three types of absolute continuity for monotone measures and present some of their basic properties. By means of these three types of absolute continuity, we establish generalized Egoroff's theorem, generalized Riesz's theorem and generalized Lebesgue's theorem in the framework involving the ordered pair of monotone measures. The Egoroff theorem, the Riesz theorem and the Lebesgue theorem in the traditional sense concerning a unique monotone measure are extended to the general case. These three generalized convergence theorems include as special cases several previous versions of Egoroff-like theorem, Riesz-like theorem and Lebesgue-like theorem for monotone measures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
412
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
53-64
UT code for WoS article
000637966800004
EID of the result in the Scopus database
2-s2.0-85089189678