All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Entropy-Based Learning of Compositional Models from Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00546760" target="_blank" >RIV/67985556:_____/21:00546760 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31160/21:00057557

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-88601-1_12" target="_blank" >http://dx.doi.org/10.1007/978-3-030-88601-1_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-88601-1_12" target="_blank" >10.1007/978-3-030-88601-1_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Entropy-Based Learning of Compositional Models from Data

  • Original language description

    We investigate learning of belief function compositional models from data using information content and mutual information based on two different definitions of entropy proposed by Jiroušek and Shenoy in 2018 and 2020, respectively. The data consists of 2,310 randomly generated basic assignments of 26 binary variables from a pairwise consistent and decomposable compositional model. We describe results achieved by three simple greedy algorithms for constructing compositional models from the randomly generated low-dimensional basic assignments.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Belief Functions: Theory and Applications - 6th International Conference, BELIEF 2021 - Proceedings

  • ISBN

    978-3-030-88600-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    10

  • Pages from-to

    117-126

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Shanghai

  • Event date

    Oct 15, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article