All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conditional independence structures over four discrete random variables revisited: conditional Ingleton inequalities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00547016" target="_blank" >RIV/67985556:_____/21:00547016 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9514618" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9514618</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIT.2021.3104250" target="_blank" >10.1109/TIT.2021.3104250</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conditional independence structures over four discrete random variables revisited: conditional Ingleton inequalities

  • Original language description

    The paper deals with linear information inequalities valid for entropy functions induced by discrete random variables. Specifically, the so-called conditional Ingleton inequalities are in the center of interest: these are valid under conditional independence assumptions on the inducing random variables. We discuss five inequalities of this particular type, four of which has appeared earlier in the literature. Besides the proof of the new fifth inequality, simpler proofs of (some of) former inequalities are presented. These five information inequalities are used to characterize all conditional independence structures induced by four discrete random variables.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04579S" target="_blank" >GA19-04579S: Conditonal independence structures: methods of polyhedral geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Information Theory

  • ISSN

    0018-9448

  • e-ISSN

    1557-9654

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    7030-7049

  • UT code for WoS article

    000709078200008

  • EID of the result in the Scopus database

    2-s2.0-85113264597