All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Bayesian Transfer Learning between Autoregressive Inference Tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00549008" target="_blank" >RIV/67985556:_____/21:00549008 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISSC52156.2021.9467857" target="_blank" >http://dx.doi.org/10.1109/ISSC52156.2021.9467857</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISSC52156.2021.9467857" target="_blank" >10.1109/ISSC52156.2021.9467857</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Bayesian Transfer Learning between Autoregressive Inference Tasks

  • Original language description

    Bayesian transfer learning typically relies on a complete stochastic dependence specification between source and target learners. We advocate a solution to the Bayesian transfer learning paradigm which adopts Fully Probabilistic Design (FPD) to search for an optimal choice of distribution constrained by probabilistic source knowledge. Using this optimal decision-making strategy, an algorithm for accepting source knowledge is identified but is found to be effectively insensitive to source uncertainty. Therefore, we propose an adaptation of the FPD framework which results in a robust transfer learning algorithm.Experimental evidence gathered via synthetic data shows enhanced performance when employing both optimal algorithms in a low source data predictor variance regime. In a high source data predictor variance setting, only our adapted FPD-optimal algorithm achieves robustness.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 32nd Irish Signals and Systems Conference (ISSC) 2021

  • ISBN

    978-1-6654-3429-4

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    9467857

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Athlone

  • Event date

    Jun 10, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article