All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gradient Polyconvexity and Modeling of Shape Memory Alloys

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00567192" target="_blank" >RIV/67985556:_____/21:00567192 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-90051-9_5" target="_blank" >http://dx.doi.org/10.1007/978-3-030-90051-9_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-90051-9_5" target="_blank" >10.1007/978-3-030-90051-9_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gradient Polyconvexity and Modeling of Shape Memory Alloys

  • Original language description

    We show existence of an energetic solution to a model of shape memory alloys in which the elastic energy is described by means of a gradient polyconvex functional. This allows us to show existence of a solution based on weak continuity of nonlinear minors of deformation gradients in Sobolev spaces. Admissible deformations do not necessarily have integrable second derivatives. Under suitable assumptions, our model allows for solutions which are orientation-preserving and globally injective everywhere in the domain representing the specimen. Theoretical results are supported by three-dimensional computational examples.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Variational Views in Mechanics

  • ISBN

    978-3-030-90050-2

  • Number of pages of the result

    24

  • Pages from-to

    133-156

  • Number of pages of the book

    309

  • Publisher name

    Springer Nature

  • Place of publication

    Cham

  • UT code for WoS chapter