Gradient Polyconvexity and Modeling of Shape Memory Alloys
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00567192" target="_blank" >RIV/67985556:_____/21:00567192 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-90051-9_5" target="_blank" >http://dx.doi.org/10.1007/978-3-030-90051-9_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-90051-9_5" target="_blank" >10.1007/978-3-030-90051-9_5</a>
Alternative languages
Result language
angličtina
Original language name
Gradient Polyconvexity and Modeling of Shape Memory Alloys
Original language description
We show existence of an energetic solution to a model of shape memory alloys in which the elastic energy is described by means of a gradient polyconvex functional. This allows us to show existence of a solution based on weak continuity of nonlinear minors of deformation gradients in Sobolev spaces. Admissible deformations do not necessarily have integrable second derivatives. Under suitable assumptions, our model allows for solutions which are orientation-preserving and globally injective everywhere in the domain representing the specimen. Theoretical results are supported by three-dimensional computational examples.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Variational Views in Mechanics
ISBN
978-3-030-90050-2
Number of pages of the result
24
Pages from-to
133-156
Number of pages of the book
309
Publisher name
Springer Nature
Place of publication
Cham
UT code for WoS chapter
—