A 0-1 Law in Mathematical Fuzzy Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00550074" target="_blank" >RIV/67985556:_____/22:00550074 - isvavai.cz</a>
Alternative codes found
RIV/67985955:_____/22:00561334
Result on the web
<a href="https://ieeexplore.ieee.org/document/9628030" target="_blank" >https://ieeexplore.ieee.org/document/9628030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2021.3131200" target="_blank" >10.1109/TFUZZ.2021.3131200</a>
Alternative languages
Result language
angličtina
Original language name
A 0-1 Law in Mathematical Fuzzy Logic
Original language description
This paper continues the theoretical study of weighted structures in mathematical fuzzy logic focusing on the finite model theory of fuzzy logics valued on arbitrary finite MTL-chains. We show that for any first-order (or infinitary with finitely many variables) formula phi, there is a unique truth-value that phi takes almost surely in every finite many-valued model and such that every other truth-value is almost surely not taken. This generalizes a theorem in the fuzzy setting due to Robert Kosik and Christian G. Fermuller.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-23610M" target="_blank" >GM21-23610M: Logical Structure of Information Channels</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
1941-0034
Volume of the periodical
30
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
3833-3840
UT code for WoS article
000848264000038
EID of the result in the Scopus database
2-s2.0-85120858567