A theory of magneto-elastic nanorods obtained through rigorous dimension reduction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00554516" target="_blank" >RIV/67985556:_____/22:00554516 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0307904X22000592?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0307904X22000592?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apm.2022.01.028" target="_blank" >10.1016/j.apm.2022.01.028</a>
Alternative languages
Result language
angličtina
Original language name
A theory of magneto-elastic nanorods obtained through rigorous dimension reduction
Original language description
Starting from a two-dimensional theory of magneto-elasticity for fiber-reinforced magnetic elastomers we carry out a rigorous dimension reduction to derive a rod model that describes a thin magneto-elastic strip undergoing planar deformations. The main features of the theory are the following: a magneto-elastic interaction energy that manifests itself through a distributed torque, a penalization term that prevents local interpenetration of matter, a regularization term that depends on the second gradient of the deformation and models microstructure-induced size effects. As an application, we consider a problem involving magnetically-induced buckling and we study how the intensity of the field at the onset of the instability increases if the length of the rod is decreased. Finally, we assess the accuracy of the deduced model by performing numerical simulations where we compare the two-dimensional and the one-dimensional theories in some special cases, and we observe excellent agreement.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF19-29646L" target="_blank" >GF19-29646L: Large Strain Challenges in Materials Science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematical Modelling
ISSN
0307-904X
e-ISSN
1872-8480
Volume of the periodical
106
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
426-447
UT code for WoS article
000795866800002
EID of the result in the Scopus database
2-s2.0-85125268844