All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Large deviations for (1+1)-dimensional stochastic geometric wave equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00556599" target="_blank" >RIV/67985556:_____/22:00556599 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039622002406?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039622002406?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2022.04.003" target="_blank" >10.1016/j.jde.2022.04.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Large deviations for (1+1)-dimensional stochastic geometric wave equation

  • Original language description

    We consider stochastic wave map equation on real line with solutions taking values in a d-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-07140S" target="_blank" >GA19-07140S: Stochastic Evolution Equations and Space-Time Systems</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    325

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    69

  • Pages from-to

    1-69

  • UT code for WoS article

    000795956700001

  • EID of the result in the Scopus database

    2-s2.0-85127936125