Large deviations for (1+1)-dimensional stochastic geometric wave equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00556599" target="_blank" >RIV/67985556:_____/22:00556599 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039622002406?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039622002406?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2022.04.003" target="_blank" >10.1016/j.jde.2022.04.003</a>
Alternative languages
Result language
angličtina
Original language name
Large deviations for (1+1)-dimensional stochastic geometric wave equation
Original language description
We consider stochastic wave map equation on real line with solutions taking values in a d-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-07140S" target="_blank" >GA19-07140S: Stochastic Evolution Equations and Space-Time Systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
325
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
69
Pages from-to
1-69
UT code for WoS article
000795956700001
EID of the result in the Scopus database
2-s2.0-85127936125