All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

How to find it in the data?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00557864" target="_blank" >RIV/67985556:_____/22:00557864 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Jak to v těch datech najít?

  • Original language description

    Přednáška si klade za cíl seznámit odbornou veřejnost s aktivitami oddělení Zpracování obrazové informace ÚTIA AV ČR v.v v oblasti analýz dat projektu Copernicus. Oddělení se dlouhodobě zabývá vývojem metod digitálního zpracování obrazu a hlubokého učení. Během posledních dvou let vzniklo několik demonstračních studentských prací ve spolupráci s MFF UK a FJFI ČVUT využívajících data z družic Sentinel, jako například rozpoznávání typů plodin z časových řad snímků ze satelitu Sentinel-2, automatická segmentace oblastí podle způsobu využití či typu povrchu pomocí metod strojového učení, přesnější detekce mraků v datech ze Sentinel-2, ve spolupráci s Ústavem pro hydrodynamiku AV ČR postupy pro odhad vlhkosti povrchové vrstvy krajiny z dat družice Sentinel-2 a zvyšování rozlišení tepelných dat Sentinel-3 pomocí metod hlubokého učení. V druhé části budou přiblíženy možnosti aplikace metod vyvinutých pro jiné oblasti (separace zdrojů ninformace) v DPZ.

  • Czech name

    Jak to v těch datech najít?

  • Czech description

    Přednáška si klade za cíl seznámit odbornou veřejnost s aktivitami oddělení Zpracování obrazové informace ÚTIA AV ČR v.v v oblasti analýz dat projektu Copernicus. Oddělení se dlouhodobě zabývá vývojem metod digitálního zpracování obrazu a hlubokého učení. Během posledních dvou let vzniklo několik demonstračních studentských prací ve spolupráci s MFF UK a FJFI ČVUT využívajících data z družic Sentinel, jako například rozpoznávání typů plodin z časových řad snímků ze satelitu Sentinel-2, automatická segmentace oblastí podle způsobu využití či typu povrchu pomocí metod strojového učení, přesnější detekce mraků v datech ze Sentinel-2, ve spolupráci s Ústavem pro hydrodynamiku AV ČR postupy pro odhad vlhkosti povrchové vrstvy krajiny z dat družice Sentinel-2 a zvyšování rozlišení tepelných dat Sentinel-3 pomocí metod hlubokého učení. V druhé části budou přiblíženy možnosti aplikace metod vyvinutých pro jiné oblasti (separace zdrojů ninformace) v DPZ.

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20206 - Computer hardware and architecture

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů