Rectangles-based discrete universal fuzzy integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00559712" target="_blank" >RIV/67985556:_____/22:00559712 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X22000925?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X22000925?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2022.06.003" target="_blank" >10.1016/j.ijar.2022.06.003</a>
Alternative languages
Result language
angličtina
Original language name
Rectangles-based discrete universal fuzzy integrals
Original language description
Using hypergraphs of survival functions, we propose a rather general method for the construction of discrete fuzzy integrals. Our method is based on various rectangle decompositions of hypergraphs and on rectangle mappings suitably evaluating the rectangles of the considered decompositions. By means of appropriate binary aggregation functions we define two types of rectangle mappings and four types of discrete fuzzy integral constructions, and we also investigate the properties of the introduced integrals and the relationships between them. All the introduced methods based on non-overlapping rectangles coincide in the case of the product aggregation function, and then the related integral is the Choquet integral. Several examples are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
1873-4731
Volume of the periodical
148
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
162-173
UT code for WoS article
000833300000007
EID of the result in the Scopus database
2-s2.0-85132873051