Learning Noisy-Or Networks with an Application in Linguistics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00561324" target="_blank" >RIV/67985556:_____/22:00561324 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15210/22:73618985
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning Noisy-Or Networks with an Application in Linguistics
Original language description
In this paper we discuss the issue of learning Bayesian networks whose conditional probability tables (CPTs) are either noisy-or models or general CPTs. We refer to these models as Mixed Noisy-Or Bayesian Networks. In order to learn the structure of such Bayesian networks we modify the Bayesian Information Criteria (BIC) used for general Bayesian networks so that it reflects the number of parameters of a noisy-or model. We prove the log-likelihood function of a noisy-or model has a unique maximum and adapt the EM-learning method for leaky noisy-or models. We evaluate the proposed approach on synthetic data where it performs substantially better than general BNs. We apply this approach also to a problem from the domain of linguistics. We use Mixed Noisy-Or Bayesian Networks to model spread of loanwords in the South-East Asia Archipelago. We perform numerical experiments in which we compare prediction ability of general Bayesian Networks with Mixed Noisy-Or Bayesian Networks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-18407S" target="_blank" >GA20-18407S: Verb Class Analysis Accelerator for Low-Resource Languages - RoboCorp</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Number of pages
12
Pages from-to
277-288
Publisher name
PMLR
Place of publication
Almerı́a
Event location
Almería
Event date
Oct 5, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—