All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00563211" target="_blank" >RIV/67985556:_____/22:00563211 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-97549-4_59" target="_blank" >http://dx.doi.org/10.1007/978-3-030-97549-4_59</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-97549-4_59" target="_blank" >10.1007/978-3-030-97549-4_59</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method

  • Original language description

    An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation. To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF19-29646L" target="_blank" >GF19-29646L: Large Strain Challenges in Materials Science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Large-Scale Scientific Computing

  • ISBN

    978-3-030-97548-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    515-523

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Sozopol

  • Event date

    Jun 7, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000893681300059