Model-based preference quantification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573588" target="_blank" >RIV/67985556:_____/23:00573588 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2023.111185" target="_blank" >10.1016/j.automatica.2023.111185</a>
Alternative languages
Result language
angličtina
Original language name
Model-based preference quantification
Original language description
Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their preferences dependent on several attributes. The paper provides the needed preference completion and quantification for fully probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density (pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours, small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler divergence (KLD) of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from the set of pds compatible with partially-specified agent’s preferences. The optimal ideal pd minimises the KLD minima reached by the optimal strategies for respective imminent ideal pds. This preference-focused twin of the minimum KLD principle was applied to special sets of ideal pds. The paper extends them towards exploration and balancing contradictory wishes on states and actions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Automatica
ISSN
0005-1098
e-ISSN
1873-2836
Volume of the periodical
156
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
111185
UT code for WoS article
001039370200001
EID of the result in the Scopus database
2-s2.0-85166665633