Moment set selection for the SMM using simple machine learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00574253" target="_blank" >RIV/67985556:_____/23:00574253 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11230/23:10466898
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0167268123001944?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167268123001944?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jebo.2023.05.040" target="_blank" >10.1016/j.jebo.2023.05.040</a>
Alternative languages
Result language
angličtina
Original language name
Moment set selection for the SMM using simple machine learning
Original language description
This paper addresses the moment selection issue of the simulated method of moments, an estimation technique commonly applied to intractable agent-based models. We develop a simple machine learning extension reducing arbitrariness and automating the moment choice. Two algorithms are proposed: backward stepwise moment elimination and forward stepwise moment selection. The methodology is tested using simulations on a Markov-switching multifractal framework and two popular financial agent-based models with increasing complexity. We find that both algorithms can identify multiple moment sets that outperform all benchmark sets. Moreover, we achieve considerable in-sample estimation precision gains of up to 66 percent for agent-based models. Finally, an out-of-sample empirical exercise with S&P 500 data strongly supports the practical applicability of our methodology as the estimated models pass the validity test of overidentifying restrictions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-14817S" target="_blank" >GA20-14817S: Linking financial and economic agent-based models: An econometric approach</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Economic Behavior & Organization
ISSN
0167-2681
e-ISSN
1879-1751
Volume of the periodical
212
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
366-391
UT code for WoS article
001021137800001
EID of the result in the Scopus database
2-s2.0-85161338880