All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Moment set selection for the SMM using simple machine learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00574253" target="_blank" >RIV/67985556:_____/23:00574253 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11230/23:10466898

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0167268123001944?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167268123001944?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jebo.2023.05.040" target="_blank" >10.1016/j.jebo.2023.05.040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Moment set selection for the SMM using simple machine learning

  • Original language description

    This paper addresses the moment selection issue of the simulated method of moments, an estimation technique commonly applied to intractable agent-based models. We develop a simple machine learning extension reducing arbitrariness and automating the moment choice. Two algorithms are proposed: backward stepwise moment elimination and forward stepwise moment selection. The methodology is tested using simulations on a Markov-switching multifractal framework and two popular financial agent-based models with increasing complexity. We find that both algorithms can identify multiple moment sets that outperform all benchmark sets. Moreover, we achieve considerable in-sample estimation precision gains of up to 66 percent for agent-based models. Finally, an out-of-sample empirical exercise with S&P 500 data strongly supports the practical applicability of our methodology as the estimated models pass the validity test of overidentifying restrictions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-14817S" target="_blank" >GA20-14817S: Linking financial and economic agent-based models: An econometric approach</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Economic Behavior & Organization

  • ISSN

    0167-2681

  • e-ISSN

    1879-1751

  • Volume of the periodical

    212

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    26

  • Pages from-to

    366-391

  • UT code for WoS article

    001021137800001

  • EID of the result in the Scopus database

    2-s2.0-85161338880