All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experiments with the User’s Feedback in Preference Elicitation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575198" target="_blank" >RIV/67985556:_____/23:00575198 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experiments with the User’s Feedback in Preference Elicitation

  • Original language description

    This paper deals with user’s preferences (wishes). Common users are uneducated in the decision-making (DM) theory and present their preferences incompletely. That is why we elicit them from such a user during the DM. The paper works with the DM theory called fully probabilistic design (FPD). FPD models closed DM loop, made by the user and the system, by the joint probability density (pd, real pd). A joint ideal pd quantifies the user’s preferences. It assigns high probability values to preferred closed-loop behaviors and low values to undesired behaviors. The real pd should be kept near the ideal pd. By minimizing the Kullback-Leibler divergence of the real and ideal pds, the optimal decision policy is found. The presented algorithmic quantification of preferences provides ambitious but potentially reachable DM aims. It suppresses demands on tuning preference-expressing parameters. The considered ideal pd assigns high probabilities to desired (ideal) sets of states and actions. The parameters of the ideal pd (tuned during the DM via the user’s feedback) are: ▶ relative significance of respective probabilities. ▶ a parameter balancing exploration with exploitation. Their systematic tuning solves meta-DM level task, which observes the agent’s satisfaction expressed humanly by “school-marks”. It opts free parameters to reach the best marks. A formalization and solution of this meta-task were recently done, but experience with it is limited. This paper recalls the theory and provides representative samples of extensive up to now missing simulations.n

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIABI-2022 : Artificial Intelligence and Applications for Business and Industries 2022

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Number of pages

    13

  • Pages from-to

  • Publisher name

    CEUR-WS

  • Place of publication

    Achen

  • Event location

    Udine

  • Event date

    Nov 27, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article