NeRD: Neural field-based Demosaicking
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575759" target="_blank" >RIV/67985556:_____/23:00575759 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/23:00374129
Result on the web
<a href="http://dx.doi.org/10.1109/ICIP49359.2023.10221948" target="_blank" >http://dx.doi.org/10.1109/ICIP49359.2023.10221948</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICIP49359.2023.10221948" target="_blank" >10.1109/ICIP49359.2023.10221948</a>
Alternative languages
Result language
angličtina
Original language name
NeRD: Neural field-based Demosaicking
Original language description
We introduce NeRD, a new demosaicking method for generating full-color images from Bayer patterns. Our approach leverages advancements in neural fields to perform demosaicking by representing an image as a coordinate-based neural network with sine activation functions. The inputs to the network are spatial coordinates and a low-resolution Bayer pattern, while the outputs are the corresponding RGB values. An encoder network, which is a blend of ResNet and U-net, enhances the implicit neural representation of the image to improve its quality and ensure spatial consistency through prior learning. Our experimental results demonstrate that NeRD outperforms traditional and state-of-the-art CNN-based methods and significantly closes the gap to transformer-based methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-03921S" target="_blank" >GA21-03921S: Inverse problems in image processing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP)
ISBN
978-1-7281-9835-4
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
1735-1739
Publisher name
IEEE
Place of publication
Piscataway
Event location
Kuala Lumpur
Event date
Oct 8, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—