All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

NeRD: Neural field-based Demosaicking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575759" target="_blank" >RIV/67985556:_____/23:00575759 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/23:00374129

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICIP49359.2023.10221948" target="_blank" >http://dx.doi.org/10.1109/ICIP49359.2023.10221948</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICIP49359.2023.10221948" target="_blank" >10.1109/ICIP49359.2023.10221948</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    NeRD: Neural field-based Demosaicking

  • Original language description

    We introduce NeRD, a new demosaicking method for generating full-color images from Bayer patterns. Our approach leverages advancements in neural fields to perform demosaicking by representing an image as a coordinate-based neural network with sine activation functions. The inputs to the network are spatial coordinates and a low-resolution Bayer pattern, while the outputs are the corresponding RGB values. An encoder network, which is a blend of ResNet and U-net, enhances the implicit neural representation of the image to improve its quality and ensure spatial consistency through prior learning. Our experimental results demonstrate that NeRD outperforms traditional and state-of-the-art CNN-based methods and significantly closes the gap to transformer-based methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-03921S" target="_blank" >GA21-03921S: Inverse problems in image processing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP)

  • ISBN

    978-1-7281-9835-4

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1735-1739

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Kuala Lumpur

  • Event date

    Oct 8, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article